Online only
DISPVA10050-SH
New product
Digital Voltmeter and Ammeter display lcd red color DC 0-100V 0-50A with Shunt
Article recommended for measure PV, battery or electronic circuit voltage and current |
0 Item Items
This product is no longer in stock
Warning: Last items in stock!
Availability date:
By buying this product you can collect up to 1 loyalty point. Your cart will total 1 loyalty point that can be converted into a voucher of 0,05 €.
Digital Voltmeter and Ammeter display lcd red color DC 0-100V 0-50A with Shunt
Digital Voltmeter and Ammeter display lcd red color DC 0-100V 0-50A with Shunt
Article recommended for measure PV, battery or electronic circuit voltage and current |
Recipient :
* Required fields
or Cancel
Height (inches) | 42 mm |
Width | 158 mm |
thickness (mil) | 84 mm |
Weight (Oz) | 85 g |
Operating Voltage | DC 4.5 ~ 30V |
Measure Voltage | DC 0 ~ 100V |
Min. resolution (V) | 0.1 V |
Measure Current | 50A DC (ext shunt required) |
Min. resolution (A) | 0.1 A |
Operating Current | less than 20 mA |
Display | lcd red color |
Refresh rate | about 500mS / times |
Measuring accuracy | 1% ( 1 digit) |
Operating temperature | -10°C to 65°C |
Operating humidity | 10 to 80% (non-condensing) |
Operating pressure | 80 to 106 kPa |
EAN | 0707077343213 |
Descrizione:
This device allows the measurement of voltage and current, showing on the display the values in volts and amperes due to the shunt, provided with the meter.
Source: Wikipedia
In electronics, a shunt is a device which allows electric current to pass around another point in the circuit by creating a low resistance path. The term is also widely used in photovoltaics to describe an unwanted short circuit between the front and back surface contacts of a solar cell, usually caused by wafer damage. The origin of the term is in the verb 'to shunt' meaning to turn away or follow a different path.
An ammeter shunt allows the measurement of current values too large to be directly measured by a particular ammeter. In this case the shunt, a manganin resistor of accurately known resistance, is placed in series with the load, thus all of the current to be measured will flow through it. In order not to disrupt the circuit, the resistance of the shunt is normally very small. The voltage drop across the shunt is proportional to the current flowing through it and since its resistance is known, a voltmeter connected across the shunt can be scaled to directly display the current value.
Shunts are rated by maximum current and voltage drop at that current. For example, a 500 A, 75 mV shunt would have a resistance of 0.15 milliohms, a maximum allowable current of 500 amps and at that current the voltage drop would be 75 millivolts. By convention, most shunts are designed to drop 50 mV, 75 mV or 100 mV when operating at their full rated current and most ammeters consist of a shunt and a voltmeter with full-scale deflections of 50, 75, or 100 mV. All shunts have a derating factor for continuous use, 66% being the most common. Continuous use is a run time of 2+ minutes, at which point the derating factor must be applied. There are thermal limits where a shunt will no longer operate correctly. At 80 °C thermal drift begins to occur, at 120 °C thermal drift is a significant problem where error, depending on the design of the shunt, can be several percent and at 140 °C the manganin alloy becomes permanently damaged due to annealing resulting in the resistance value drifting up or down.
If the current being measured is also at a high voltage potential this voltage will be present in the connecting leads to and in the reading instrument itself. Sometimes, the shunt is inserted in the return leg (groundedside) to avoid this problem. Some alternatives to shunts can provide isolation from the high voltage by not directly connecting the meter to the high voltage circuit. Examples of devices that can provide this isolation are Hall effect current sensors and current transformers (see clamp meters). Current shunts are considered more accurate and cheaper than Hall effect devices. Common accuracy of such devices are ±0.1% & 0.25% and 0.5%.
The Thomas-type double manganin walled shunt and MI type (improved Thomas-type design) were used until the 1990s by NIST and other government labs as the legal reference of an ohm until the advent of thequantum Hall effect. Thomas-type shunts are still used by government and private labs to take very accurate current measurements, as using quantum Hall effect is a time consuming process. The accuracy of these types of shunts is measured in the ppm and sub-ppm scale of drift per year of set resistance.
Wiring:
Connections diagrams:
Article recommended for measure PV, battery or electronic circuit voltage and current | |
|
High Brightness LED 1W warm white 120Lm with...
1,23 €
DIY 70W solar KIT composed by 36 poly solar...
48,15 €
3,30 €
0,10 €
Solar charger controller CMP03 3A 12V
8,50 €
DIY solar KIT 150Wp composed by 40 mono...
145,00 €
KIT 12W 12 solar cells 3"x3" (78X78mm) A-grade...
16,90 €
4,32 €
PowerSonic PPS-1242 12V 4,2A Reachargeable...
12,99 €
Special connector for Sunpower c60 solar cells....
0,22 €
45,00 €
32,00 €
73,77 €