Online only
SEN-PHC-1K5528
New product
24 Item Items
Warning: Last items in stock!
Availability date:
No reward points for this product.
Luminosity sensor Photoresistor GL5528 LDR THT for Arduino
Recipient :
* Required fields
or Cancel
Light Resistance at 10Lux (at 25℃) | 8~20KΩ |
Dark Resistance at 0 Lux | 1.0MΩ(min) |
Gamma value at 100-10Lux | 0.7 |
Power Dissipation(at 25℃) | 100mW |
Max Voltage (at 25℃) | 150V |
Spectral Response peak (at 25℃) | 540nm |
Ambient Temperature Range | -30~+70℃ |
A photoresistor (or light-dependent resistor, LDR, or photocell) is a light-controlled variable resistor. The resistance of a photoresistor decreases with increasing incident light intensity; in other words, it exhibits photoconductivity. A photoresistor can be applied in light-sensitive detector circuits, and light- and dark-activated switching circuits.
A photoresistor is made of a high resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several megohms (MΩ), while in the light, a photoresistor can have a resistance as low as a few hundred ohms. If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band. The resulting free electrons (and their hole partners) conduct electricity, thereby lowering resistance. The resistance range and sensitivity of a photoresistor can substantially differ among dissimilar devices. Moreover, unique photoresistors may react substantially differently to photons within certain wavelength bands.
A photoelectric device can be either intrinsic or extrinsic. An intrinsic semiconductor has its own charge carriers and is not an efficient semiconductor, for example, silicon. In intrinsic devices the only available electrons are in the valence band, and hence the photon must have enough energy to excite the electron across the entire bandgap. Extrinsic devices have impurities, also called dopants, added whose ground state energy is closer to the conduction band; since the electrons do not have as far to jump, lower energy photons (that is, longer wavelengths and lower frequencies) are sufficient to trigger the device. If a sample of silicon has some of its atoms replaced by phosphorus atoms (impurities), there will be extra electrons available for conduction. This is an example of an extrinsic semiconductor.
For any further information about how to use this product, please read this tutorial written by Mauro Alfieri
Special connector for Sunpower c60 solar cells....
0,22 €
High Power Led 10W 800-900LmArticle...
1,80 €
400 hole Breadboard
1,98 €
1,15 €
2,00 €
SunPower flexible Monocrystalline solar cell...
1,70 €
3W LED Module High Power Module
3,14 €
4,50 €
SunPower flexible Monocrystalline solar cell...
1,25 €
6,66 €
12,86 €
5,86 €
3,50 €
5,49 €
7,56 €
9,00 €
7,10 €
3,50 €
8,58 €
7,95 €
6,10 €
3,37 €
2,73 €
3,17 €
2,78 €
3,22 €
2,78 €
10,98 €
7,00 €
6,22 €
28,06 €
7,32 €
4,27 €
23,42 €
3,00 €
2,89 €
3,78 €
3,50 €
5,49 €